optimal pruned K-nearest neighbors: op-knn application to financial modelingReportar como inadecuado

optimal pruned K-nearest neighbors: op-knn application to financial modeling - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 CES - Centre d-économie de la Sorbonne 2 SAMOS - Statistique Appliquée et MOdélisation Stochastique 3 CIS - Laboratory of Computer and Information Science 4 DICE-MLG - Machine Learning Group 5 Helsinki University of Technology

Abstract : The paper proposes a methodology called OP-KNN, which builds a one hidden- layer feedforward neural network, using nearest neighbors neurons with extremely small com- putational time. The main strategy is to select the most relevant variables beforehand, then to build the model using KNN kernels. Multiresponse Sparse Regression (MRSR) is used as the second step in order to rank each kth nearest neighbor and finally as a third step Leave-One- Out estimation is used to select the number of neighbors and to estimate the generalization performances. This new methodology is tested on a toy example and is applied to financial modeling

Autor: Eric Severin - Yoan Miche - Amaury Lendasse - Anti Sorjamaa - Qi Yu -

Fuente: https://hal.archives-ouvertes.fr/


Documentos relacionados