Artificial reasoners for human process supervision Reportar como inadecuado




Artificial reasoners for human process supervision - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Pere Ponsa ;Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial 2000, 4 (9)

Autor: Andreu Català

Fuente: http://www.redalyc.org/


Introducción



Inteligencia Artificial.
Revista Iberoamericana de Inteligencia Artificial ISSN: 1137-3601 revista@aepia.org Asociación Española para la Inteligencia Artificial España Català, Andreu; Ponsa, Pere Artificial Reasoners for Human Process Supervision Inteligencia Artificial.
Revista Iberoamericana de Inteligencia Artificial, vol.
4, núm.
9, invierno, 2000, pp.
76 - 84 Asociación Española para la Inteligencia Artificial Valencia, España Available in: http:--www.redalyc.org-articulo.oa?id=92540910 How to cite Complete issue More information about this article Journals homepage in redalyc.org Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative ARTIFICIAL REASONERS FOR HUMAN PROCESS SUPERVISION Andreu Català, Pere Ponsa Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial UPC & LEA-SICA Av.
Víctor Balaguer, s-n 08800 Vilanova i la Geltrú e-mail: {andreu,pponsa}@esaii.upc.es Louise Travé-Massuyès LAAS-CNRS & LEA-SICA 7, Avenue du Colonel-Roche 31077 Toulouse Cedex e-mail:louise@laas.fr Abstract: A methodology for analysing human reasoning when performing a supervision task has been proposed in WAHRPS project (Worlds for assessing human reasoning in process supervision), conducted by INSERM 455 [1].
The main issue is the modelling of different human reasoning styles implemented as Reference Artificial Reasoners (RAR), and the study of decision sequences in front of several dynamic processes.
In this paper, an adaptive tool able to generate different types of dynamical systems with increasing difficulty degrees is presented. The design and implementation of a reference artificial reasoner (RAR) based on sequential control, and the implementation of a RAR based on qualitative reasoning is also reported.
Finally, a discussion about the comparison between human and artificial decision sequences, in fro...





Documentos relacionados