A Novel Neural Network-Based Technique for Smart Gas Sensors Operating in a Dynamic EnvironmentReport as inadecuate

A Novel Neural Network-Based Technique for Smart Gas Sensors Operating in a Dynamic Environment - Download this document for free, or read online. Document in PDF available to download.

Laboratoire d’Electronique Avancée, Département d’Electronique, Université de Batna, 05 Avenue Chahid Boukhlouf 05000 Batna, Algeria


Author to whom correspondence should be addressed.

Abstract Thanks to their high sensitivity and low-cost, metal oxide gas sensors MOX are widely used in gas detection, although they present well-known problems lack of selectivity and environmental effects…. We present in this paper a novel neural network- based technique to remedy these problems. The idea is to create intelligent models; the first one, called corrector, can automatically linearize a sensor’s response characteristics and eliminate its dependency on the environmental parameters. The corrector’s responses are processed with the second intelligent model which has the role of discriminating exactly the detected gas nature and concentration. The gas sensors used are industrial resistive kind TGS8xx, by Figaro Engineering. The MATLAB environment is used during the design phase and optimization. The sensor models, the corrector, and the selective model were implemented and tested in the PSPICE simulator. The sensor model accurately expresses the nonlinear character of the response and the dependence on temperature and relative humidity in addition to their gas nature dependency. The corrector linearizes and compensates the sensor’s responses. The method discriminates qualitatively and quantitatively between seven gases. The advantage of the method is that it uses a small representative database so we can easily implement the model in an electrical simulator. This method can be extended to other sensors. View Full-Text

Keywords: gas sensor; ANN; implementation; ABM; corrector gas sensor; ANN; implementation; ABM; corrector

Author: Hakim Baha * and Zohir Dibi

Source: http://mdpi.com/


Related documents