An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine ApproachReportar como inadecuado


An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine Approach


An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine Approach - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Department of Geography and Center for Galapagos Studies, University of North Carolina at Chapel Hill, Campus Box 3220, Chapel Hill, NC 27599, USA



Current Address: Department of Geography and Global Environmental and Climate Change Centre, McGill University, Burnside Hall Room 705, 805 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada





Abstract Mangroves provide valuable ecosystem goods and services such as carbon sequestration, habitat for terrestrial and marine fauna, and coastal hazard mitigation. The use of satellite remote sensing to map mangroves has become widespread as it can provide accurate, efficient, and repeatable assessments. Traditional remote sensing approaches have failed to accurately map fringe mangroves and true mangrove species due to relatively coarse spatial resolution and-or spectral confusion with landward vegetation. This study demonstrates the use of the new Worldview-2 sensor, Object-based image analysis OBIA, and support vector machine SVM classification to overcome both of these limitations. An exploratory spectral separability showed that individual mangrove species could not be spectrally separated, but a distinction between true and associate mangrove species could be made. An OBIA classification was used that combined a decision-tree classification with the machine-learning SVM classification. Results showed an overall accuracy greater than 94% kappa = 0.863 for classifying true mangroves species and other dense coastal vegetation at the object level. There remain serious challenges to accurately mapping fringe mangroves using remote sensing data due to spectral similarity of mangrove and associate species, lack of clear zonation between species, and mixed pixel effects, especially when vegetation is sparse or degraded. View Full-Text

Keywords: mangroves; OBIA; support vector machine; Galapagos Islands; decision-tree; classification mangroves; OBIA; support vector machine; Galapagos Islands; decision-tree; classification





Autor: Benjamin W. Heumann †

Fuente: http://mdpi.com/



DESCARGAR PDF




Documentos relacionados