Cramér-von mises statistic for repeated measures Reportar como inadecuado

Cramér-von mises statistic for repeated measures - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Carlos Carleos ; Norberto Corral ;Revista Colombiana de Estadística 2014, 37 1

Autor: Pablo Martínez-Camblor



Revista Colombiana de Estadística ISSN: 0120-1751 Universidad Nacional de Colombia Colombia Martínez-Camblor, Pablo; Carleos, Carlos; Corral, Norberto Cramér-Von Mises Statistic for Repeated Measures Revista Colombiana de Estadística, vol.
37, núm.
1, junio, 2014, pp.
45-67 Universidad Nacional de Colombia Bogotá, Colombia Available in: How to cite Complete issue More information about this article Journals homepage in Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative Revista Colombiana de Estadística Junio 2014, volumen 37, no.
1, pp.
45 a 67 Cramér-Von Mises Statistic for Repeated Measures El estadístico de Cramér-Von Mises para medidas repetidas Pablo Martínez-Camblor1,2,a , Carlos Carleos2,b , Norberto Corral2,c 1 Oficina de Investigación Biosanitaria (OIB), FICYT, Oviedo, Spain 2 Departamento Estadística e IO y DM, Universidad de Oviedo, Asturias, Spain Abstract The Cramér-von Mises criterion is employed to compare whether the marginal distribution functions of a k-dimensional random variable are equal or not.
The well-known Donsker invariance principle and the KarhunenLoéve expansion is used in order to derive its asymptotic distribution.
Two different resampling plans (one based on permutations and the other one based on the general bootstrap algorithm, gBA) are also considered to approximate its distribution.
The practical behaviour of the proposed test is studied from a Monte Carlo simulation study.
The statistical power of the test based on the Cramér-von Mises criterion is competitive when the underlying distributions are different in location and is clearly better than the Friedman one when the sole difference among the involved distributions is the spread or the shape.
Both resampling plans lead to simil...

Documentos relacionados