Weighted inequalities for multivariable dyadic paraproducsReportar como inadecuado



 Weighted inequalities for multivariable dyadic paraproducs


Weighted inequalities for multivariable dyadic paraproducs - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: Weighted inequalities for multivariable dyadic paraproducs
Using Wilsons Haar basis in $\R^n$, which is different than the usual tensor product Haar functions, we define its associated dyadic paraproduct in $\R^n$. We can then extend -trivially- Beznosovas Bellman function proof of the linear bound in $L^2w$ with respect to $w {A 2}$ for the 1-dimensional dyadic paraproduct. Here trivial means that each piece of the argument that had a Bellman function proof has an $n$-dimensional counterpart that holds with the same Bellman function. The lemma that allows for this painless extension we call the good Bellman function Lemma. Furthermore the argument allows to obtain dimensionless bounds in the anisotropic case.



Autor: Daewon Chung

Fuente: https://archive.org/



DESCARGAR PDF




Documentos relacionados