Wilson Fermions, Random Matrix Theory and the Aoki PhaseReportar como inadecuado



 Wilson Fermions, Random Matrix Theory and the Aoki Phase


Wilson Fermions, Random Matrix Theory and the Aoki Phase - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: Wilson Fermions, Random Matrix Theory and the Aoki Phase
The QCD partition function for the Wilson Dirac operator, $D W$, at nonzero lattice spacing $a$ can be expressed in terms of a chiral Lagrangian as a systematic expansion in the quark mass, the momentum and $a^2$. Starting from this chiral Lagrangian we obtain an analytical expression for the spectral density of $\gamma 5 D W+m$ in the microscopic domain. It is shown that the $\gamma 5$-Hermiticity of the Dirac operator necessarily leads to a coefficient of the $a^2$ term that is consistent with the existence of an Aoki phase. The transition to the Aoki phase is explained, and the interplay of the index of $D W$ and nonzero $a$ is discussed. We formulate a random matrix theory for the Wilson Dirac operator with index $ u$ which, in the continuum limit, becomes equal to the topological charge of gauge field configurations. It is shown by an explicit calculation that this random matrix theory reproduces the $a^2$-dependence of the chiral Lagrangian in the microscopic domain, and that the sign of the $a^2$-term is directly related to the $\gamma 5$-Hermiticity of $D W$.



Autor: G. Akemann; P. H. Damgaard; K. Splittorff; J. J. M. Verbaarschot

Fuente: https://archive.org/







Documentos relacionados