Weighted norm inequalities for oscillatory integrals with finite type phases on the lineReportar como inadecuado



 Weighted norm inequalities for oscillatory integrals with finite type phases on the line


Weighted norm inequalities for oscillatory integrals with finite type phases on the line - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: Weighted norm inequalities for oscillatory integrals with finite type phases on the line
We obtain two-weighted $L^2$ norm inequalities for oscillatory integral operators of convolution type on the line whose phases are of finite type. The conditions imposed on the weights involve geometrically-defined maximal functions, and the inequalities are best-possible in the sense that they imply the full $L^p\mathbb{R} ightarrow L^q\mathbb{R}$ mapping properties of the oscillatory integrals. Our results build on work of Carbery, Soria, Vargas and the first author.



Autor: Jonathan Bennett; Samuel Harrison

Fuente: https://archive.org/



DESCARGAR PDF




Documentos relacionados