Vector- and Pseudoscalar-baryon coupled channel systemsReportar como inadecuado

 Vector- and Pseudoscalar-baryon coupled channel systems

Vector- and Pseudoscalar-baryon coupled channel systems - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: Vector- and Pseudoscalar-baryon coupled channel systems
In this manuscript, I will report the details of our recent work on the vector meson-baryon VB interaction, which we studied with the motivation of finding dynamical generation of resonances in the corresponding systems. We started our study by building a formalism based on the hidden local symmetry and calculating the leading order contributions to the scattering equations by summing the diagrams with: a a vector meson exchange in the t-channel b an octet baryon exchange in the s-, u-channels and c a contact interaction arising from the part of the vector meson-baryon Lagrangian which is related to the anomalous magnetic moment of the baryons. We find the contribution from all these sources, except the s-channel, to be important. The amplitudes obtained by solving the coupled channel Bethe-Salpeter equations for the systems with total strangeness zero, show generation of one isospin 3-2, spin 1-2 resonance and three isospin 1-2 resonances: two with spin 3-2 and one with spin 1-2. We identify these resonances with $\Delta$ 1900 $S {31}$, $N^*$2080 $D {13}$, $N^*$1700 $D {13}$, and $N^*$2090 $S {11}$, respectively. We have further extended our study by including pseudoscalar meson-baryon PB as the coupled channels of VB systems. For this, we obtain the PB $ ightarrow$ VB amplitudes by using the Kroll-Ruddermann term where, considering the vector meson dominance phenomena, the photon is replaced by a vector meson. The calculations done within this formalism reveal a very strong coupling of the VB channels to the low-lying resonances like $\Lambda$1405 and $\Lambda$1670, which can have important implications on certain reactions producing them. In addition to this, we find that the effect of coupling the higher mass states to the lighter channels is not restricted to increasing the width of those states, it can be far more strong.

Autor: K. P. Khemchandani; A. Martínez Torres; H. Kaneko; H. Nagahiro; A. Hosaka


Documentos relacionados