Uniqueness for a hyperbolic inverse problem with angular control on the coefficientsReportar como inadecuado



 Uniqueness for a hyperbolic inverse problem with angular control on the coefficients


Uniqueness for a hyperbolic inverse problem with angular control on the coefficients - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: Uniqueness for a hyperbolic inverse problem with angular control on the coefficients
Suppose $q ix$, $i=1,2$ are smooth functions on $\R^3$ and $U ix,t$ the solutions of the initial value problem {gather*} \pa t^2 U i- \Delta U i - q ix U i = \deltax,t, \qquad x,t \in \R^3 \times \R U ix,t =0, \qquad \text{for} ~ t0$, independent of $r$, so that \\int {|x|=r} | \Delta S q 1 - q 2|^2 \, dS x \leq \gamma \int {|x|=r} |q 1 - q 2|^2 \, dS x, \qquad \forall r \in R, R+T-2.\ Here $\Delta S$ is the spherical Laplacian on $|x|=r$.



Autor: Rakesh; Paul Sacks

Fuente: https://archive.org/







Documentos relacionados