On the number of generators of ideals defining Gorenstein Artin algebras with Hilbert function $ 1,n 1, 1 {n 1choose 2},...,{n 1choose 2} 1, n 1,1$Reportar como inadecuado



 On the number of generators of ideals defining Gorenstein Artin algebras with Hilbert function $ 1,n 1, 1 {n 1choose 2},...,{n 1choose 2} 1, n 1,1$


On the number of generators of ideals defining Gorenstein Artin algebras with Hilbert function $ 1,n 1, 1 {n 1choose 2},...,{n 1choose 2} 1, n 1,1$ - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: On the number of generators of ideals defining Gorenstein Artin algebras with Hilbert function $ 1,n 1, 1 {n 1choose 2},

.,{n 1choose 2} 1, n 1,1$

Let $R = kw, x 1,

., x n-I$ be a graded Gorenstein Artin algebra . Then $I = \ann F$ for some $F$ in the divided power algebra $k {DP}W, X 1,

., X n$. If $RI 2$ is a height one idealgenerated by $n$ quadrics, then $I 2 \subset w$ after a possible change of variables. Let $J = I \cap kx 1,

., x n$. Then $\muI \le \muJ+n+1$ and $I$ is said to be generic if $\muI = \muJ + n+1$. In this article we prove necessary conditions, in terms of $F$, for an ideal to be generic. With some extra assumptions on the exponents of terms of $F$, we obtain a characterization for $I = \ann F$ to be generic in codimension four.



Autor: Sabine El Khoury; A. V. Jayanthan; Hema Srinivasan

Fuente: https://archive.org/







Documentos relacionados