Minimax sparse principal subspace estimation in high dimensionsReportar como inadecuado



 Minimax sparse principal subspace estimation in high dimensions


Minimax sparse principal subspace estimation in high dimensions - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: Minimax sparse principal subspace estimation in high dimensions
We study sparse principal components analysis in high dimensions, where $p$ the number of variables can be much larger than $n$ the number of observations, and analyze the problem of estimating the subspace spanned by the principal eigenvectors of the population covariance matrix. We introduce two complementary notions of $\ell q$ subspace sparsity: row sparsity and column sparsity. We prove nonasymptotic lower and upper bounds on the minimax subspace estimation error for $0\leq q\leq1$. The bounds are optimal for row sparse subspaces and nearly optimal for column sparse subspaces, they apply to general classes of covariance matrices, and they show that $\ell q$ constrained estimates can achieve optimal minimax rates without restrictive spiked covariance conditions. Interestingly, the form of the rates matches known results for sparse regression when the effective noise variance is defined appropriately. Our proof employs a novel variational $\sin\Theta$ theorem that may be useful in other regularized spectral estimation problems.



Autor: Vincent Q. Vu; Jing Lei

Fuente: https://archive.org/







Documentos relacionados