L^2 Harmonic 1-forms on submanifolds with finite total curvatureReportar como inadecuado



 L^2 Harmonic 1-forms on submanifolds with finite total curvature


L^2 Harmonic 1-forms on submanifolds with finite total curvature - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: L^2 Harmonic 1-forms on submanifolds with finite total curvature
Let $x:M^m\to \bar M$, with $m\geq 3$, be an isometric immersion of a complete noncompact manifold $M$ in a complete simply-connected manifold $\bar M$ with sectional curvature satisfying $-c^2\leq K {\bar M}\leq 0$, for some constant $c$. Assume that the immersion has finite total curvature. If $c eq 0$, assume further that the first eigenvalue of the Laplacian of $M$ is bounded from below by a suitable constant. We prove that the space of the $L^2$ harmonic 1-forms on $M$ has finite dimension. Moreover there exists a constant $\La0$, explicitly computed, such that if the total curvature is bounded from above by $\La$ then there is no nontrivial $L^2$-harmonic 1-forms on $M$.



Autor: Marcos P. Cavalcante; Heudson Mirandola; Feliciano Vitorio

Fuente: https://archive.org/







Documentos relacionados