Learning Stable Group Invariant Representations with Convolutional NetworksReportar como inadecuado



 Learning Stable Group Invariant Representations with Convolutional Networks


Learning Stable Group Invariant Representations with Convolutional Networks - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: Learning Stable Group Invariant Representations with Convolutional Networks
Transformation groups, such as translations or rotations, effectively express part of the variability observed in many recognition problems. The group structure enables the construction of invariant signal representations with appealing mathematical properties, where convolutions, together with pooling operators, bring stability to additive and geometric perturbations of the input. Whereas physical transformation groups are ubiquitous in image and audio applications, they do not account for all the variability of complex signal classes. We show that the invariance properties built by deep convolutional networks can be cast as a form of stable group invariance. The network wiring architecture determines the invariance group, while the trainable filter coefficients characterize the group action. We give explanatory examples which illustrate how the network architecture controls the resulting invariance group. We also explore the principle by which additional convolutional layers induce a group factorization enabling more abstract, powerful invariant representations.



Autor: Joan Bruna; Arthur Szlam; Yann LeCun

Fuente: https://archive.org/







Documentos relacionados