Vol 23: Loss of LRPPRC causes ATP synthase deficiency.Report as inadecuate



 Vol 23: Loss of LRPPRC causes ATP synthase deficiency.


Vol 23: Loss of LRPPRC causes ATP synthase deficiency. - Download this document for free, or read online. Document in PDF available to download.

Download or read this book online for free in PDF: Vol 23: Loss of LRPPRC causes ATP synthase deficiency.
This article is from Human Molecular Genetics, volume 23.AbstractDefects of the oxidative phosphorylation system, in particular of cytochrome-c oxidase COX, respiratory chain complex IV, are common causes of Leigh syndrome LS, which is a rare neurodegenerative disorder with severe progressive neurological symptoms that usually present during infancy or early childhood. The COX-deficient form of LS is commonly caused by mutations in genes encoding COX assembly factors, e.g. SURF1, SCO1, SCO2 or COX10. However, other mutations affecting genes that encode proteins not directly involved in COX assembly can also cause LS. The leucine-rich pentatricopeptide repeat containing protein LRPPRC regulates mRNA stability, polyadenylation and coordinates mitochondrial translation. In humans, mutations in Lrpprc cause the French Canadian type of LS. Despite the finding that LRPPRC deficiency affects the stability of most mitochondrial mRNAs, its pathophysiological effect has mainly been attributed to COX deficiency. Surprisingly, we show here that the impaired mitochondrial respiration and reduced ATP production observed in Lrpprc conditional knockout mouse hearts is caused by an ATP synthase deficiency. Furthermore, the appearance of inactive subassembled ATP synthase complexes causes hyperpolarization and increases mitochondrial reactive oxygen species production. Our findings shed important new light on the bioenergetic consequences of the loss of LRPPRC in cardiac mitochondria.



Author: Mourier, Arnaud; Ruzzenente, Benedetta; Brandt, Tobias; Kuhlbrandt, Werner; Larsson, Nils-Goran

Source: https://archive.org/







Related documents