Jacobi structures on affine bundlesReportar como inadecuado

 Jacobi structures on affine bundles

Jacobi structures on affine bundles - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: Jacobi structures on affine bundles
We study affine Jacobi structures on an affine bundle $\pi:A\to M$, i.e. Jacobi brackets that close on affine functions. We prove that there is a one-to-one correspondence between affine Jacobi structures on $A$ and Lie algebroid structures on the vector bundle $A^+=\bigcup {p\in M}AffA p,\R$ of affine functionals. Some examples and applications, also for the linear case, are discussed. For a special type of affine Jacobi structures which are canonically exhibited strongly-affine or affine-homogeneous Jacobi structures over a real vector space of finite dimension, we describe the leaves of its characteristic foliation as the orbits of an affine representation. These affine Jacobi structures can be viewed as an analog of the Kostant-Arnold-Liouville linear Poisson structure on the dual space of a real finite-dimensional Lie algebra.

Autor: J. Grabowski; D. Iglesias; J. C. Marrero; E. Padrón; P. Urbański

Fuente: https://archive.org/

Documentos relacionados