Profile decomposition and phase control for circle-valued maps in one dimensionReportar como inadecuado




Profile decomposition and phase control for circle-valued maps in one dimension - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 ICJ - Institut Camille Jordan Villeurbanne

Abstract : When 1 < p < ∞, maps f in W^{1-p,p}0,1;S^1 have W^{1-p,p} phases φ, but the W^{1-p,p}-seminorm of φ is not controlled by the one of f . Lack of control is illustrated by -the kink-: f = e^{ıφ}, where the phase φ moves quickly from 0 to 2π. A similar situation occurs for maps f : S^1 → S^1, with Moebius maps playing the role of kinks. We prove that this is the only loss of control mechanism. As an application, we obtain the existence of minimal maps of degree one in W^{1-p,p}S^1;S^1 with p∈2−ε,2.

Keywords : Profile decomposition circle-valued map phase Sobolev spaces





Autor: Petru Mironescu -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados