The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in $RR^d$, $d ge 3$Reportar como inadecuado




The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in $RR^d$, $d ge 3$ - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 GREMAQ - Groupe de recherche en économie mathématique et quantitative 2 Equipe Mathématiques pour l-Industrie et la Physique- IMT IMT - Institut de Mathématiques de Toulouse UMR5219

Abstract : It is known that, for the parabolic-elliptic Keller-Segel system with critical porous-medium diffusion in dimension $\RR^d$, $d \ge 3$ also referred to as the quasilinear Smoluchowski-Poisson equation, there is a critical value of the chemotactic sensitivity measuring in some sense the strength of the drift term above which there are solutions blowing up in finite time and below which all solutions are global in time. This global existence result is shown to remain true for the parabolic-parabolic Keller-Segel system with critical porous-medium type diffusion in dimension $\RR^d$, $d \ge 3$, when the chemotactic sensitivity is below the same critical value. The solution is constructed by using a minimising scheme involving the Kantorovich-Wasserstein metric for the first component and the $L^2$-norm for the second component. The cornerstone of the proof is the derivation of additional estimates which relies on a generalisation to a non-monotone functional of a method due to Matthes, McCann, \& Savaré 2009.

keyword : chemotaxis Keller-Segel model degenerate diffusion minimising scheme Wasserstein distance





Autor: Adrien Blanchet - Philippe Laurençot -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados