en fr Harmonic analysis on graphs and Lie groups : quadratic functionals, Riesz transforms and Besov spaces Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espacesReportar como inadecuado




en fr Harmonic analysis on graphs and Lie groups : quadratic functionals, Riesz transforms and Besov spaces Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 IF - Institut Fourier

Abstract : This thesis is devoted to results in real harmonic analysis in discrete graphs or continuous Lie groups geometric contexts.Let $\Gamma$ be a graph a set of vertices and edges equipped with a discrete laplacian $\Delta=I-P$, where $P$ is a Markov operator.Under suitable geometric assumptions on $\Gamma$, we show the $L^p$ boundedness of fractional Littlewood-Paley functionals. We introduce $H^1$ Hardy spaces of functions and of $1$-differential forms on $\Gamma$, giving several characterizations of these spaces, only assuming the doubling property for the volumes of balls in $\Gamma$. As a consequence, we derive the $H^1$ boundedness of the Riesz transform. Assuming furthermore pointwise upper bounds for the kernel Gaussian of subgaussian upper bounds on the iterates of the kernel of $P$, we also establish the $L^p$ boundedness of the Riesz transform for $1



Autor: Joseph Feneuil -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados