Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budgetReportar como inadecuado




Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budget - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Climatic Change

, Volume 81, Supplement 1, pp 233–247

First Online: 17 March 2007Received: 15 February 2005Accepted: 17 October 2006

Abstract

The inter-annual variability in monthly mean summer temperatures derived from nine different regional climate model RCM integrations is investigated for both the control climate 1961–1990 and a future climate 2071–2100 based on A2 emissions. All regional model integrations, carried out in the PRUDENCE project, use the same boundaries of the HadAM3H global atmospheric model. Compared to the CRU TS 2.0 observational data set most RCMs but not all overpredict the temperature variability significantly in their control simulation. The behaviour of the different regional climate models is analysed in terms of the surface energy budget, and the contributions of the different terms in the surface energy budget to the temperature variability are estimated. This analysis shows a clear relation in the model ensemble between temperature variability and the combined effects of downward long wave, net short wave radiation and evaporation defined as F. However, it appears that the overestimation of the temperature variability has no unique cause. The effect of short-wave radiation dominates in some RCMs, whereas in others the effect of evaporation dominates. In all models the temperature variability and F increase when imposing future climate boundary conditions, with particularly high values in central Europe.

Download to read the full article text



Autor: G. Lenderink - A. van Ulden - B. van den Hurk - E. van Meijgaard

Fuente: https://link.springer.com/







Documentos relacionados