PathFinder: mining signal transduction pathway segments from protein-protein interaction networksReportar como inadecuado

PathFinder: mining signal transduction pathway segments from protein-protein interaction networks - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

BMC Bioinformatics

, 8:335

First Online: 13 September 2007Received: 10 April 2007Accepted: 13 September 2007


BackgroundA Signal transduction pathway is the chain of processes by which a cell converts an extracellular signal into a response. In most unicellular organisms, the number of signal transduction pathways influences the number of ways the cell can react and respond to the environment. Discovering signal transduction pathways is an arduous problem, even with the use of systematic genomic, proteomic and metabolomic technologies. These techniques lead to an enormous amount of data and how to interpret and process this data becomes a challenging computational problem.

ResultsIn this study we present a new framework for identifying signaling pathways in protein-protein interaction networks. Our goal is to find biologically significant pathway segments in a given interaction network. Currently, protein-protein interaction data has excessive amount of noise, e.g., false positive and false negative interactions. First, we eliminate false positives in the protein-protein interaction network by integrating the network with microarray expression profiles, protein subcellular localization and sequence information. In addition, protein families are used to repair false negative interactions. Then the characteristics of known signal transduction pathways and their functional annotations are extracted in the form of association rules.

ConclusionGiven a pair of starting and ending proteins, our methodology returns candidate pathway segments between these two proteins with possible missing links recovered false negatives. In our study, S. cerevisiae yeast data is used to demonstrate the effectiveness of our method.

Electronic supplementary materialThe online version of this article doi:10.1186-1471-2105-8-335 contains supplementary material, which is available to authorized users.

Download fulltext PDF

Autor: Gurkan Bebek - Jiong Yang


Documentos relacionados