On stochastic modified 3d navier-stokes equations with anisotropic viscosityReportar como inadecuado

On stochastic modified 3d navier-stokes equations with anisotropic viscosity - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 Department of Mathematics, University of Wyoming 2 SAMM - Statistique, Analyse et Modélisation Multidisciplinaire SAmos-Marin Mersenne 3 LPMA - Laboratoire de Probabilités et Modèles Aléatoires

Abstract : Navier-Stokes equations in the whole space R^3 subject to an anisotropic viscosity and a random perturbation of multiplicative type is described. By adding a term of Brinkman-Forchheimer type to the model, existence and uniqueness of global weak solutions in the PDE sense are proved. These are strong solutions in the probability sense. The convective term given in terms of the Brinkman-Forchheirmer provides some extra regularity in the space L^{2α+2} R^3, with α > 1. As a consequence, the nonlinear term has better properties which allows to prove uniqueness. The proof of existence is performed through a control method. A Large Deviations Principle is given and proven at the end of the paper.

Keywords : Navier-Stokes equations anisotropic viscosity stochastic PDEs Brinkman-Forchheimer model non-linear connectivity large deviations

Autor: Hakima Bessaih - Annie Millet -

Fuente: https://hal.archives-ouvertes.fr/


Documentos relacionados