Structural and kinetic properties of laterally stabilized, oligoethylene glycol-containing alkylthiolates on gold: A modular approachReportar como inadecuado

Structural and kinetic properties of laterally stabilized, oligoethylene glycol-containing alkylthiolates on gold: A modular approach - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.


, Volume 1, Issue 1, pp 22–34

Received: 10 February 2006Accepted: 27 February 2006


The formation of highly ordered self-assembled monolayers SAMs on gold from an unusually long and linear compound HSCH215CONHCH2CH2O6CH2CONHCH215CH3 is investigated by contact angle goniometry, ex situ null ellipsometry, cyclic voltammetry and infrared reflection-absorption spectroscopy. The molecules are found to assemble in an upright position as a complete monolayer within 60 min. The overall structure of the SAM reaches equilibrium within 24 h as evidenced by infrared spectroscopy, although a slight improvement in water contact angles is observed over a period of a few weeks. The resulting SAM is 60 Å thick and it displays an advancing water contact angle of 112° and excellent electrochemical blocking characteristics with typical current densities about 20 times lower as compared to those observed for HSCH215CH3 SAMs. The dominating crystalline phases of the supporting HSCH215 and terminal CH215CH3 alkyl portions, as well as the sealed oligoethylene glycol OEG -core,- appear as unusually sharp features in the infrared spectra at room temperature. For example, the splitting seen for the CH3 stretching and CH2 scissoring peaks is normally only observed for conformationally trapped alkylthiolate SAMs at low temperatures and for highly crystalline polymethylenes. Temperature-programmed infrared spectroscopy in ultrahigh vacuum reveals a significantly improved thermal stability of the SAM under investigation, as compared to two analogous OEG derivatives without the extended alkyl chain. Our study points out the advantages of adopting a -modular approach- in designing novel SAM-forming compounds with precisely positioned in plane stabilizing groups. We demonstrate also the potential of using the above set of compounds in the fabrication of -hydrogel-like- arrays with controlled wetting properties for application in the ever-growing fields of protein and cell analysis, as well as for bioanalytical applications.

Download to read the full article text

Autor: Ramūnas Valiokas - Mattias Östblom - Fredrik Björefors - Bo Liedberg - Jing Shi - Peter Konradsson


Documentos relacionados