FJRW-Rings and Landau-Ginzburg Mirror Symmetry in Two Dimensions - Mathematics > Algebraic GeometryReportar como inadecuado




FJRW-Rings and Landau-Ginzburg Mirror Symmetry in Two Dimensions - Mathematics > Algebraic Geometry - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: For any non-degenerate, quasi-homogeneous hypersurface singularity W and anadmissible group of diagonal symmetries G, Fan, Jarvis, and Ruan haveconstructed a cohomological field theory which is a candidate for themathematical structure behind the Landau-Ginzburg A-model. When using theorbifold Milnor ring of a singularity W as a B-model, and the Frobenius algebraH {W,G} constructed by Fan, Jarvis, and Ruan, as an A-model, the followingconjecture is obtained: For a quasi-homogeneous singularity W and a group G ofsymmetries of W, there is a dual singularity W^T such that the orbifold A-modelof W-G is isomorphic to the B-model of W^T. I will show that this conjectureholds for a two-dimensional invertible loop potential $W$ with its maximalgroup of diagonal symmetries $G {W}$.



Autor: Pedro Acosta

Fuente: https://arxiv.org/







Documentos relacionados