Equidistribution of jellium energy for Coulomb and Riesz InteractionsReportar como inadecuado

Equidistribution of jellium energy for Coulomb and Riesz Interactions - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 Bonn - Max Planck Institute for Mathematics 2 IMB - Institut de Mathématiques de Bourgogne Dijon

Abstract : For general dimension $d$ we prove the equidistribution of energy at the micro-scale in $\mathbb R^d$, for the optimal point configurations appearing in Coulomb gases at zero temperature. At the microscopic scale, i.e. after blow-up at the scale corresponding to the interparticle distance, in the case of Coulomb gases we show that the energy concentration is precisely determined by the macroscopic density of points, independently of the scale. This uses the -jellium energy- which was previously shown to control the next-order term in the large particle number asymptotics of the minimum energy. As a corollary, we obtain sharp error bounds on the discrepancy between the number of points and its expected average of optimal point configurations for Coulomb gases, extending previous results valid only for $2$-dimensional log-gases. For Riesz gases with interaction potentials $gx=|x|^{-s}, s\in\min\{0,d-2\},d$ and one-dimensional log-gases, we prove the same equidistribution result under an extra hypothesis on the decay of the localized energy, which we conjecture to hold for minimizing configurations. In this case we use the Caffarelli-Silvestre description of the non-local fractional Laplacians in $\mathbb R^d$ to localize the problem.

Autor: Mircea Petrache - Simona Rota Nodari -

Fuente: https://hal.archives-ouvertes.fr/


Documentos relacionados