Effects of column density on I2 spectroscopy and a determination of I2 absorption cross section at 500 nmReportar como inadecuado

Effects of column density on I2 spectroscopy and a determination of I2 absorption cross section at 500 nm - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 IUP - Institute of Environmental Physics Bremen

Abstract : The use of ro-vibronic spectra of I2 in the region of 543 nm to 578 nm as reference spectra for atmospheric Differential Optical Absorption Spectroscopy is studied. In this study it is shown that the retrieval of atmospheric column densities with Differential Optical Absorption Spectroscopy set-ups at FWHM at and above 1nm depends critically on the column density, under which the used reference spectrum was recorded. Systematic overestimation of the comparatively low atmospheric column density of I2 of the order of 13% is possible. Under low pressure conditions relevant in laboratory studies, the systematic deviations may grow up to 45%. To avoid such effects with respect to field measurements, new reference spectra of I2 were determined under column density of the order of 1016 molec-cm2 close to that expected for the atmospheric measurement. Thereby the described systematic deviations are avoided. Two typical configurations of Differential Optical Absorption Spectroscopy, which use grating spectrometers, were chosen for the spectroscopic set-up. One spectrum was recorded at similar resolution 0.25 nm FWHM but finer binning 0.035 nm-pixel than previously published data. For the other 0.59 nm FWHM, 0.154 nm-pixel no previously published spectra exist. Wavelength calibration is accurate to ±0.04 nm and ±0.11 nm respectively. The absorption cross section for the recordings was determined under low column density with an accuracy of ±4% and ±3% respectively. The absolute absorption cross section of I2 at 500 nm in standard air in the continuum absorption region was determined using a method independent of iodine vapour pressure. Obtained was ?I2500 nm=2.186±0.021·10?18 cm2·molec?1 in very good agreement with previously published results, but at 50% smaller uncertainty. From this and previously published results a weighted average of ?I2500 nm=2.191±0.02 ·10?18 cm2·molec?1 is determined.

Autor: P. Spietz - J. C. Gómez Martín - J. P. Burrows

Fuente: https://hal.archives-ouvertes.fr/


Documentos relacionados