The steady state configurational distribution diffusion equation of the standard FENE dumbbell polymer model: existence and uniqueness of solutions for arbitrary velocity gradientsReportar como inadecuado




The steady state configurational distribution diffusion equation of the standard FENE dumbbell polymer model: existence and uniqueness of solutions for arbitrary velocity gradients - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 ICJ - Institut Camille Jordan Villeurbanne

Abstract : The configurational distribution function, solution of an evolution diffusion equation of the Fokker-Planck-Smoluchowski type, is at least part of the corner stone of polymer dynamics: it is the key to calculating the stress tensor components. This can be reckoned from \cite{bird2}, where a wealth of calculation details is presented regarding various polymer chain models and their ability to accurately predict viscoelastic flows. One of the simplest polymer chain idealization is the Bird and Warner-s model of finitely extensible nonlinear elastic FENE chains. In this work we offer a proof that the steady state configurational distribution equation has unique solutions irrespective of the outer flow velocity gradients i.e. for both slow and fast flows.

Keywords : FENE dumbbell chains Fokker-Planck-Smoluchowski equation existence and uniqueness of solutions slow and fast viscoelastic flows Krein-Rutman theorems





Autor: Ionel Sorin Ciuperca - Liviu Iulian Palade -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados