Dynamic inverse problem solution using a kalman filter smoother for neuron al activity estimation Reportar como inadecuado




Dynamic inverse problem solution using a kalman filter smoother for neuron al activity estimation - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Jorge I. Padilla-Buriticá ; César G. Castellanos-Domínguez ;Tecno Lógicas 2011, 27

Autor: Eduardo Giraldo-Suárez

Fuente: http://www.redalyc.org/articulo.oa?id=344234327003


Introducción



Tecno Lógicas ISSN: 0123-7799 tecnologicas@itm.edu.co Instituto Tecnológico Metropolitano Colombia Giraldo-Suárez, Eduardo; Padilla-Buriticá, Jorge I.; Castellanos-Domínguez, César G. Dynamic Inverse Problem Solution Using a Kalman Filter Smoother for Neuron al Activity Estimation Tecno Lógicas, núm.
27, diciembre, 2011, pp.
33-51 Instituto Tecnológico Metropolitano Medellín, Colombia Available in: http:--www.redalyc.org-articulo.oa?id=344234327003 How to cite Complete issue More information about this article Journals homepage in redalyc.org Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative Dynamic Inverse Problem Solution Using a Kalman Filter Smoother for Neuronal Activity Estimation Eduardo Giraldo-Suárez1 Jorge I.
Padilla-Buriticá2 César G.
Castellanos-Domínguez3 Abstract This article presents an estimation method of neuronal activity into the brain using a Kalman smoother approach that takes into account in the solution of the inverse problem the dynamic variability of the time series.
This method is applied over a realistic head model calculated with the boundary element method.
A comparative analysis for the dynamic estimation methods is made up from simulated EEG signals for several noise conditions.
The solution of the inverse problem is achieved by using high performance computing techniques and an evaluation of the computational cost is performed for each method.
As a result, the Kalman smoother approach presents better performance in the estimation task than the regularized static solution, and the direct Kalman filter. Keywords Inverse problem, physiological model. neuronal activity, Kalman filter,                                                              1 2 3 Programa de Ingeniería Eléctrica, Universidad Tecnológica de Per...





Documentos relacionados