Bayesian Nonparametric Inference of decreasing densitiesReportar como inadecuado

Bayesian Nonparametric Inference of decreasing densities - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 CEREMADE - CEntre de REcherches en MAthématiques de la DEcision 2 CREST - Centre de Recherche en Économie et Statistique 3 MAP5 - MAP5 - Mathématiques Appliquées à Paris 5 4 UP9 - Université Paris 9, Dauphine

Abstract : Abstract In this paper we discuss consistency of the posterior distribution in cases where the Kullback-Leibler condition is not verified. This condition is stated as : for all $\epsilon > 0$ the prior probability of sets in the form $\{f ; KLf0 , f \leq \epsilon\}$ where KLf0 , f denotes the Kullback-Leibler divergence between the true density f0 of the observations and the density f , is positive. This condi- tion is in almost cases required to lead to weak consistency of the posterior distribution, and thus to lead also to strong consistency. However it is not a necessary condition. We therefore present a new condition to replace the Kullback-Leibler condition, which is usefull in cases such as the estimation of decreasing densities. We then study some specific families of priors adapted to the estimation of decreasing densities and provide posterior concentration rate for these priors, which is the same rate a the convergence rate of the maximum likelihood estimator. Some simulation results are provided. Keywords: Nonparametric Bayesian inference, Consistency, entropy, Kullback Leibler, k-monotone density, kernel mixture.

Autor: Soleiman Khazaei - Judith Rousseau -



Documentos relacionados