Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fieldsReportar como inadecuado




Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 I3M - Institut de Mathématiques et de Modélisation de Montpellier 2 UCD - University College Dublin Dublin

Abstract : Gibbs random fields play an important role in statistics, however, the resulting likelihood is typically unavailable due to an intractable normalizing constant.
Composite likelihoods offer a principled means to construct useful approximations.
This paper provides a mean to calibrate the posterior distribution resulting from using a composite likelihood and illustrate its performance in several examples.


Keywords : Gibbs random fields Composite likelihoods Autologistic model





Autor: Julien Stoehr - Nial Friel -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados