Sparse Jurdjevic–Quinn stabilization of dissipative systemsReportar como inadecuado

Sparse Jurdjevic–Quinn stabilization of dissipative systems - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 M2N - Modélisation mathématique et numérique 2 Department of Mathematical Sciences Camden 3 LSIS - Laboratoire des Sciences de l-Information et des Systèmes 4 CaGE - Control And GEometry LJLL - Laboratoire Jacques-Louis Lions, Inria de Paris 5 LJLL - Laboratoire Jacques-Louis Lions

Abstract : For control-affine systems with a proper Lyapunov function, the classical Jurdjevic-Quinn procedure gives a well-known and widely used method for the design of feedback controls that asymptotically stabilize the system to some invariant set. In this procedure, all controls are in general required to be activated, i.e. nonzero, at the same time.In this paper we give sufficient conditions under which this stabilization can be achieved by means of sparse feedback controls, i.e., feedback controls having the smallest possible number of nonzero components. We thus obtain a sparse version of the classical Jurdjevic-Quinn theorem.We propose three different explicit stabilizing control strategies, depending on the method used to handle possible discontinuities arising from the definition of the feedback:a time-varying periodic feedback, a sampled feedback, and a hybrid hysteresis. We illustrate our results by applying them to opinion formation models, thus recovering and generalizing former results for such models.

Autor: Marco Caponigro - Benedetto Piccoli - Francesco Rossi - Emmanuel Trélat -



Documentos relacionados