Automated rejection and repair of bad trials in MEG-EEGReportar como inadecuado

Automated rejection and repair of bad trials in MEG-EEG - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 LTCI - Laboratoire Traitement et Communication de l-Information 2 Télécom ParisTech 3 UPMC - Université Pierre et Marie Curie - Paris 6 4 Departamento de Computación Buenos Aires

Abstract : We present an automated solution for detecting bad trials in magneto-electroencephalography M-EEG.
Bad trials are commonly identified using peak-to-peak rejection thresholds that are set manually.
This work proposes a solution to determine them automatically using cross-validation.
We show that automatically selected rejection thresholds perform at par with manual thresholds, which can save hours of visual data inspection.
We then use this automated approach to learn a sensor-specific rejection threshold.
Finally, we use this approach to remove trials with finer precision and-or partially repair them using interpolation.
We illustrate the performance on three public datasets.
The method clearly performs better than a competitive benchmark on a 19-subject Faces dataset.

Keywords : magnetoencephalography electroencephalography preprocessing artifact rejection automation machine learning

Autor: Mainak Jas - Denis Engemann - Federico Raimondo - Yousra Bekhti - Alexandre Gramfort -



Documentos relacionados