SOMO-m Optimization Algorithm with Multiple WinnersReport as inadecuate

SOMO-m Optimization Algorithm with Multiple Winners - Download this document for free, or read online. Document in PDF available to download.

Discrete Dynamics in Nature and SocietyVolume 2012 2012, Article ID 969104, 13 pages

Research ArticleDepartment of Applied Mathematics, Dalian University of Technology, 116024 Dalian, China

Received 1 April 2012; Revised 6 June 2012; Accepted 6 June 2012

Academic Editor: M. De la Sen

Copyright © 2012 Wei Wu and Atlas Khan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Self-organizing map SOM neural networks have been widely applied in information sciences. In particular, Su and Zhao proposes in 2009 an SOM-based optimization SOMO algorithm in order to find a wining neuron, through a competitive learning process, that stands for the minimum of an objective function. In this paper, we generalize the SOM-based optimization SOMO algorithm to so-called SOMO-m algorithm with winning neurons. Numerical experiments show that, for , SOMO-m algorithm converges faster than SOM-based optimization SOMO algorithm when used for finding the minimum of functions. More importantly, SOMO-m algorithm with can be used to find two or more minimums simultaneously in a single learning iteration process, while the original SOM-based optimization SOMO algorithm has to fulfil the same task much less efficiently by restarting the learning iteration process twice or more times.

Author: Wei Wu and Atlas Khan



Related documents