A distributed wheel sieve algorithm using Scheduling by Multiple Edge ReversalReport as inadecuate




A distributed wheel sieve algorithm using Scheduling by Multiple Edge Reversal - Download this document for free, or read online. Document in PDF available to download.

* Corresponding author 1 Instituto Universidade Virtual PESC - Programa de Engenharia de Sistemas e Computação 2 PESC - Programa de Engenharia de Sistemas e Computação 3 LIPN - Laboratoire d-Informatique de Paris-Nord

Abstract : This paper presents a new distributed approach for generating all prime numbers in a given interval of integers. From Eratosthenes, who elaborated the first prime sieve more than 2000 years ago, to the current generation of parallel computers, which have permitted to reach larger bounds on the interval or to obtain previous results in a shorter time, prime numbers generation still represents an attractive domain of research and plays a central role in cryptography. We propose a fully distributed algorithm for finding all primes in the interval $2\ldots, n$, based on the \emph{wheel sieve} and the SMER \emph{Scheduling by Multiple Edge Reversal} multigraph dynamics. Given a multigraph $\mathcal{M}$ of arbitrary topology, having $N$ nodes, an SMER-driven system is defined by the number of directed edges arcs between any two nodes of $\mathcal{M}$, and by the global period length of all -arc reversals- in $\mathcal{M}$. The new prime number generation method inherits the distributed and parallel nature of SMER and requires at most $n + \lfloor \sqrt{n} floor$ time steps.

Keywords : Distributed Algorithms Prime Numbers Generation Wheel Sieve Scheduling by Edge Reversal Scheduling by Multiple Edge Reversal





Author: Gabriel Paillard - Felipe Franca - Christian Lavault -

Source: https://hal.archives-ouvertes.fr/



DOWNLOAD PDF




Related documents