El octágono medieval de oposición para oraciones con predicados cuantificados Report as inadecuate




El octágono medieval de oposición para oraciones con predicados cuantificados - Download this document for free, or read online. Document in PDF available to download.

Tópicos, Revista de Filosofía 2013, 44

Author: Juan Manuel Campos Benítez

Source: http://www.redalyc.org/articulo.oa?id=323028517006


Teaser



Tópicos, Revista de Filosofía ISSN: 0188-6649 kgonzale@up.edu.mx Universidad Panamericana México Campos Benítez, Juan Manuel El octágono medieval de Oposición para oraciones con predicados cuantificados Tópicos, Revista de Filosofía, núm.
44, 2013, pp.
177-205 Universidad Panamericana Distrito Federal, México Disponible en: http:--www.redalyc.org-articulo.oa?id=323028517006 Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org Sistema de Información Científica Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto El octágono medieval de Oposición para oraciones con predicados cuantificados Juan Manuel Campos Benítez Benemérita Universidad Autónoma de Puebla, México juancamposb@hotmail.com Abstract The traditional Square of Opposition consists of four sentence types.
Two are universal and two particular; two are affirmative and two negative.
Examples, where “S” and “P” designate the subject and the predicate, are: “every S is P”, “no S is P”, “some S is P” and “some S is not P”.
Taking the usual sentences of the square of opposition, quantifying over their predicates exhibits non-standard sentence forms.
These sentences may be combined into non-standard Squares of Opposition (an Octagon in this case), and they reveal a new relationship not found in the usual Square.
Medieval logicians termed “disparatae” sentences like “every S is some P” and “some S is every P”, which are neither subaltern nor contrary, neither contradictory nor subcontrary.
Walter Redmond has designed a special language L to express the logical form of these sentences in a precise way.
I will use this language to show how Squares of Opposition, standard and non-standard, form a complex network of relations which bring to light the subtleties contained in this traditional...





Related documents