Multiobjective Memetic Estimation of Distribution Algorithm Based on an Incremental Tournament Local SearcherReportar como inadecuado

Multiobjective Memetic Estimation of Distribution Algorithm Based on an Incremental Tournament Local Searcher - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

The Scientific World Journal - Volume 2014 2014, Article ID 836272, 21 pages -

Research Article

School of Computer Science and Engineering, Xi’an University of Technology, P.O. Box 666, No. 5 South Jinhua Road, Xi’an 710048, China

School of Computer Science, Xi’an Polytechnic University, China

Shaanxi Huanghe Group Co., Ltd., Xi’an, China

Received 16 April 2014; Accepted 18 June 2014; Published 23 July 2014

Academic Editor: T. O. Ting

Copyright © 2014 Kaifeng Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A novel hybrid multiobjective algorithm is presented in this paper, which combines a new multiobjective estimation of distribution algorithm, an efficient local searcher and ε-dominance. Besides, two multiobjective problems with variable linkages strictly based on manifold distribution are proposed. The Pareto set to the continuous multiobjective optimization problems, in the decision space, is a piecewise low-dimensional continuous manifold. The regularity by the manifold features just build probability distribution model by globally statistical information from the population, yet, the efficiency of promising individuals is not well exploited, which is not beneficial to search and optimization process. Hereby, an incremental tournament local searcher is designed to exploit local information efficiently and accelerate convergence to the true Pareto-optimal front. Besides, since ε-dominance is a strategy that can make multiobjective algorithm gain well distributed solutions and has low computational complexity, ε-dominance and the incremental tournament local searcher are combined here. The novel memetic multiobjective estimation of distribution algorithm, MMEDA, was proposed accordingly. The algorithm is validated by experiment on twenty-two test problems with and without variable linkages of diverse complexities. Compared with three state-of-the-art multiobjective optimization algorithms, our algorithm achieves comparable results in terms of convergence and diversity metrics.

Autor: Kaifeng Yang, Li Mu, Dongdong Yang, Feng Zou, Lei Wang, and Qiaoyong Jiang



Documentos relacionados