Bayesian rules and stochastic models for high accuracy prediction of solar radiationReportar como inadecuado




Bayesian rules and stochastic models for high accuracy prediction of solar radiation - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 SPE - Sciences pour l-environnement

Abstract : It is essential to find solar predictive methods to massively insert renewable energies on the electrical distribution grid. The goal of this study is to find the best methodology allowing predicting with high accuracy the hourly global radiation. The knowledge of this quantity is essential for the grid manager or the private PV producer in order to anticipate fluctuations related to clouds occurrences and to stabilize the injected PV power. In this paper, we test both methodologies: single and hybrid predictors. In the first class, we include the multi-layer perceptron MLP, auto-regressive and moving average ARMA, and persistence models. In the second class, we mix these predictors with Bayesian rules to obtain ad-hoc models selections, and Bayesian averages of outputs related to single models. If MLP and ARMA are equivalent nRMSE close to 40.5% for the both, this hybridization allows a nRMSE gain upper than 14 percentage points compared to the persistence estimation nRMSE=37% versus 51%.





Autor: Cyril Voyant - C. Darras - Marc Muselli - Christophe Paoli - Marie Laure Nivet - Philippe Poggi -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados