en fr Bootstrapping sensory-motor patterns for a constructivist learning system in continuous environments based on decentralized multi-agent approach : application to ambient intelligence Approche décentralisée de lapprentissaReportar como inadecuado




en fr Bootstrapping sensory-motor patterns for a constructivist learning system in continuous environments based on decentralized multi-agent approach : application to ambient intelligence Approche décentralisée de lapprentissa - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 LIRIS - Laboratoire d-InfoRmatique en Image et Systèmes d-information

Abstract : The theory of cognitive development from Jean Piaget 1923 is a constructivist perspective of learning that has substantially influenced cognitive science domain. Within AI, lots of works have tried to take inspiration from this paradigm since the beginning of the discipline. Indeed it seems that constructivism is a possible trail in order to overcome the limitations of classical techniques stemming from cognitivism or connectionism and create autonomous agents, fitted with strong adaptation ability within their environment, modelled on biological organisms. Potential applications concern intelligent agents in interaction with a complex environment, with objectives that cannot be predefined. Like robotics, Ambient Intelligence AmI is a rich and ambitious paradigm that represents a high complexity challenge for AI. In particular, as a part of constructivist theory, the agent has to build a representation of the world that relies on the learning of sensori-motor patterns starting from its own experience only. This step is difficult to set up for systems in continuous environments, using raw data from sensors without a priori modelling.With the use of multi-agent systems, we investigate the development of new techniques in order to adapt constructivist approach of learning on actual cases. Therefore, we use ambient intelligence as a reference domain for the application of our approach

Résumé : Nous proposons donc un modèle original d-apprentissage constructiviste adapté pour un système d-AmI. Ce modèle repose sur une approche décentralisée, permettant de multiples implémentations convenant à un environnement hétérogène. Dans les environnements réels continus sans modélisation à priori, se pose la question de la modélisation des structures élémentaires de représentation et particulièrement le problème d-amorçage de l-apprentissage sensorimoteur comme décrit par Kuipers06. Dans le cadre du modèle général proposé, nous explicitons ce problème particulier et proposons de le traiter comme une forme d-auto-organisation modélisée par un système multi-agent. Cette approche permet de construire des motifs d-interaction élémentaires à partir des seules données brutes, sur lesquels peut reposer la construction d-une représentation plus élaborée voir Mazac14. Nous présentons enfin une série d-expérimentations illustrant la résolution de ce problème d-amorçage : tout d-abord grâce à un environnement simulé, qui permet de maitriser les régularités de l-environnement et autorise des expérimentations rapides ; ensuite en implémentant ce système d-apprentissage au sein d-un environnement d-AmI réel. Pour cela le modèle est intégré dans le système d-AmI développé par l-entreprise partenaire de cette thèse CIFRE. Puis nous présentons une possible application industrielle des résultats de cette première étape implémentée d-amorçage de l-apprentissage sensorimoteur. Nous concluons par l-analyse des résultats et des perspectives de ce type d-approche pour l-AmI et l-application en général de l-IA aux systèmes réels en environnements continus

en fr

Keywords : Ambient intelligence Bootstrapping patterns Developmental robotic Machine learning Multi-agent approach Artificial intelligence

Mots-clés : Intelligence ambiante Problème d-amorçage Robotique développementale Apprentissage artificiel Système multi-agent Intelligence artificielle





Autor: Sébastien Mazac -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados