Maximum likelihood estimation from fuzzy data using the EM algorithmReportar como inadecuado

Maximum likelihood estimation from fuzzy data using the EM algorithm - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 DI Heudiasyc - Heuristique et Diagnostic des Systèmes Complexes Compiègne

Abstract : A method is proposed for estimating the parameters in a parametric statistical model when the observations are fuzzy and are assumed to be related to underlying crisp realizations of a random sample. This method is based on maximizing the observed-data likelihood defined as the probability of the fuzzy data. It is shown that the EM algorithm may be used for that purpose, which makes it possible to solve a wide range of statistical problems involving fuzzy data. This approach, called the Fuzzy EM FEM method, is illustrated using three classical problems: normal mean and variance estimation from a fuzzy sample, multiple linear regression with crisp inputs and fuzzy outputs, and univariate finite normal mixture estimation from fuzzy data.

Keywords : Statistics fuzzy data analysis estimation maximum likelihood principle regression mixture models

Autor: Thierry Denoeux -



Documentos relacionados