Multi-objective reinforcement learning for responsive gridsReportar como inadecuado

Multi-objective reinforcement learning for responsive grids - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 LRI - Laboratoire de Recherche en Informatique 2 TAO - Machine Learning and Optimisation LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623 3 LAL - Laboratoire de l-Accélérateur Linéaire

Abstract : Grids organize resource sharing, a fundamental requirement of large scientific collaborations. Seamless integration of grids into everyday use requires responsiveness, which can be provided by elastic Clouds, in the Infrastructure as a Service IaaS paradigm. This paper proposes a model-free resource provisioning strategy supporting both requirements. Provisioning is modeled as a continuous action-state space, multi-objective reinforcement learning RL problem, under realistic hypotheses; simple utility functions capture the high level goals of users, administrators, and shareholders. The model-free approach falls under the general program of autonomic computing, where the incremental learning of the value function associated with the RL model provides the so-called feedback loop. The RL model includes an approximation of the value function through an Echo State Network. Experimental validation on a real data-set from the EGEE grid shows that introducing a moderate level of elasticity is critical to ensure a high level of user satisfaction.

Autor: Julien Perez - Cecile Germain-Renaud - Balázs Kégl - Charles Loomis -



Documentos relacionados