A Parametric Spectral Estimator for Faults Detection in Induction MachinesReportar como inadecuado




A Parametric Spectral Estimator for Faults Detection in Induction Machines - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 ESE LBMS - Laboratoire brestois de mécanique et des systèmes 2 LBMS - Laboratoire brestois de mécanique et des systèmes

Abstract : Current spectrum analysis is a proven technique for fault diagnosis in electrical machines. Current spectral estimation is usually performed using classical techniques such as, periodogram FFT or its extensions. However, these techniques have several drawbacks since their frequency resolution is limited and additional post-processing algorithms are required to extract a relevant fault detection criterion. Therefore, this paper proposes a new parametric spectral estimator that fully exploits the faults sensitive frequencies. The proposed technique is based on the maximum likelihood estimator and offers high-resolution capabilities. Based on this approach, a fault criterion is derived for detecting several fault types. The proposed faults detection technique is assessed using simulations, issued from a coupled electromagnetic circuits approach-based simulation tool. It is afterwards validated using experiments on a 0.75-kW induction machine test bed for the particular case of bearing faults.

Keywords : Induction machine fault detection power spectral density estimation signal processing





Autor: El Houssin El Bouchikhi - Vincent Choqueuse - Mohamed Benbouzid -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados