Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivityReportar como inadecuado

Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.


, 11:94

First Online: 30 October 2014Received: 04 June 2014Accepted: 17 October 2014


BackgroundFormation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus M-PMV. The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid CA, and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a β-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the β-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood.

ResultsBased on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the β-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal β-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5.

ConclusionCombining functional and structural analyses, we identified a network of supportive interactions that stabilize the β-hairpin in mature M-PMV CA.

KeywordsRetrovirus Assembly M-PMV Capsid protein Maturation β-hairpin Electronic supplementary materialThe online version of this article doi:10.1186-s12977-014-0094-8 contains supplementary material, which is available to authorized users.

Download fulltext PDF

Autor: Martin Obr - Romana Hadravová - Michal Doležal - Ivana Křžová - Veronika Papoušková - Lukáš Žídek - Richard Hrab


Documentos relacionados