Enumeration of Binary Trees and Universal TypesReportar como inadecuado

Enumeration of Binary Trees and Universal Types - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 UIC - Department of Mathematics, Statistics and Computer Science Chicago 2 Department of Computer Science Purdue

Abstract : Binary unlabeled ordered trees further called binary trees were studied at least since Euler, who enumerated them. The number of such trees with n nodes is now known as the Catalan number. Over the years various interesting questions about the statistics of such trees were investigated e.g., height and path length distributions for a randomly selected tree. Binary trees find an abundance of applications in computer science. However, recently Seroussi posed a new and interesting problem motivated by information theory considerations: how many binary trees of a \emphgiven path length sum of depths are there? This question arose in the study of \emphuniversal types of sequences. Two sequences of length p have the same universal type if they generate the same set of phrases in the incremental parsing of the Lempel-Ziv-78 scheme since one proves that such sequences converge to the same empirical distribution. It turns out that the number of distinct types of sequences of length p corresponds to the number of binary unlabeled and ordered trees, T p, of given path length p and also the number of distinct Lempel-Ziv-78 parsings of length p sequences. We first show that the number of binary trees with given path length p is asymptotically equal to T p ~ 2^2p-log 2 p1+Olog ^-2-3 p. Then we establish various limiting distributions for the number of nodes number of phrases in the Lempel-Ziv-78 scheme when a tree is selected randomly among all trees of given path length p. Throughout, we use methods of analytic algorithmics such as generating functions and complex asymptotics, as well as methods of applied mathematics such as the WKB method and matched asymptotics.

Keywords : path length Binary trees types Lempel-Ziv-78

Autor: Charles Knessl - Wojciech Szpankowski -

Fuente: https://hal.archives-ouvertes.fr/


Documentos relacionados