Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equationsReportar como inadecuado

Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 Computational Engineering and Design Group, School of Engineering Sciences 2 CMLA - Centre de Mathématiques et de Leurs Applications

Abstract : We propose a non-intrusive reduced-order modeling method based on the notion of space-time-parameter proper orthogonal decomposition for approximating the solution of non-linear parametrized time-dependent partial differential equations.
A two-level proper orthogonal decomposition method is introduced for constructing spatial and temporal basis functions with special properties such that the reduced-order model satisfies the boundary and initial conditions by construction.
A radial basis function approximation method is used to estimate the undetermined coefficients in the reduced-order model without resorting to Galerkin projection.
This nonintrusive approach enables the application of our approach to general problems with complicated nonlinearity terms.
Numerical studies are presented for the parametrized Burgers- equation and a parametrized convection-reaction-diffusion problem.
We demonstrate that our approach leads to reduced-order models that accurately capture the behavior of the field variables as a function of the spatial coordinates, the parameter vector and time.

Keywords : Reduced-order model physics-based surrogate model time-dependent parametrized partial differential equation proper orthogonal decomposition radial basis functions

Autor: Christophe Audouze - Florian De Vuyst - Prasanth Nair -



Documentos relacionados