ON THE THERMAL CONSOLIDATION OF BOOM CLAY - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 CERMES - Géotechnique NAVIER UMR 8205 - Laboratoire Navier 2 IFREMER - Centre de Brest

Abstract : When a mass of saturated clay is heated, as in the case of host soils surrounding nuclear waste disposals at great depth, the thermal expansion of the constituents generates excess pore pressures. The mass of clay is submitted to gradients of pore pressure and temperature, to hydraulic and thermal flows, and to changes in its mechanical properties. In this work, some of these aspects were experimentally studied in the case of Boom clay, so as to help predicting the response of the soil, in relation with investigations made in the Belgian underground laboratory at Mol. Results of slow heating tests with careful volume change measurements showed that a reasonable prediction of the thermal expansion of the clay-water system was obtained by using the thermal properties of free water. In spite of the density of Boom clay, no significant effect of water adsorption was observed. The thermal consolidation of Boom clay was studied through fast heating tests. A simple analysis shows that the hydraulic and thermal transfers are uncoupled. Experimental results from fast heating tests showed that the consolidation coefficient does not change significantly with increased temperature, due to the opposite effect of increasing permeability and decreasing porosity. The changes of permeability with temperature were investigated by running constant head measurements at various temperatures. An indirect analysis, based on the estimation of the mv consolidation parameter, showed that the indirect method of estimating the permeability from consolidation tests should be considered carefully. Intrinsic permeability values were derived by considering the change of the viscosity of free water with temperature. A unique relationship between the intrinsic permeability and the porosity was observed, with no dependence on temperature, confirming that the flow involved in the permeability test only concerns free water.

Keywords : Clays Thermal consolidation Adsorbed water Permeability Temperature effects Radioactive waste disposal

Autor: Pierre Delage - Nabil Sultan - Yu-Jun Cui -

Fuente: https://hal.archives-ouvertes.fr/


Documentos relacionados