The interleukin-6 and noradrenaline mediated inflammation-stress feedback mechanism is dysregulated in metabolic syndrome: Effect of exerciseReport as inadecuate




The interleukin-6 and noradrenaline mediated inflammation-stress feedback mechanism is dysregulated in metabolic syndrome: Effect of exercise - Download this document for free, or read online. Document in PDF available to download.

Cardiovascular Diabetology

, 10:42

First Online: 20 May 2011Received: 22 March 2011Accepted: 20 May 2011

Abstract

BackgroundMetabolic syndrome MS is a metabolic disorder associated with obesity, type-II diabetes, and -low grade inflammation-, with the concomitant increased risk of cardiovascular events. Removal of the inflammatory mediator signals is a promising strategy to protect against insulin resistance, obesity, and other problems associated with MS such as cardiovascular disease. The aim of the present investigation was to determine the -inflammatory and stress status- in an experimental model of MS, and to evaluate the effect of a program of habitual exercise and the resulting training-induced adaptation to the effects of a single bout of acute exercise.

MethodsObese Zucker rats fa-fa were used as the experimental model of MS, and lean Zucker rats Fa-fa were used for reference values. The habitual exercise performed by the obese rats consisted of treadmill running: 5 days-week for 14 weeks, at 35 cm-s for 35 min in the last month. The acute exercise consisted of a single session of 25-35 min at 35 cm-s. Circulating concentrations of IL-6 a cytokine that regulates the inflammatory and metabolic responses, CRP a systemic inflammatory marker, and corticosterone CTC the main glucocorticoid in rats were determined by ELISA, and that of noradrenaline NA was determined by HPLC. Glucose was determined by standard methods.

ResultsThe genetically obese animals showed higher circulating levels of glucose, IL-6, PCR, and NA compared with the control lean animals. The habitual exercise program increased the concentration of IL-6, PCR, NA, and glucose, but decreased that of CTC. Acute exercise increased IL-6, CRP, and NA in the sedentary obese animals, but not in the trained obese animals. CTC was increased after the acute exercise in the trained animals only.

ConclusionAnimals with MS present a dysregulation in the feedback mechanism between IL-6 and NA which can contribute to the systemic low-grade inflammation and-or hyperglycaemia of MS. An inappropriate exercise intensity can worsen this dysregulation, contributing to the metabolic, inflammatory, and stress disorders associated with MS. Habitual exercise i.e., training induces a positive adaptation in the response to acute exercise.

List of abbreviationsCRPC-reactive protein

CTCcorticosterone

ILinterleukin

NAnoradrenaline

MSmetabolic syndrome

HPAhypothalamus-pituitary-adrenal

DM2type-II diabetes mellitus

SNSsympathetic nervous system

Electronic supplementary materialThe online version of this article doi:10.1186-1475-2840-10-42 contains supplementary material, which is available to authorized users.

Download fulltext PDF



Author: Leticia Martín-Cordero - Juan J García - Maria D Hinchado - Eduardo Ortega

Source: https://link.springer.com/article/10.1186/1475-2840-10-42







Related documents