Metabolic and Genetic Screening of Electromagnetic Hypersensitive Subjects as a Feasible Tool for Diagnostics and InterventionReportar como inadecuado

Metabolic and Genetic Screening of Electromagnetic Hypersensitive Subjects as a Feasible Tool for Diagnostics and Intervention - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Mediators of Inflammation - Volume 2014 2014, Article ID 924184, 14 pages -

Clinical Study

Centre of Innovative Biotechnological Investigations Cibi-Nanolab, Novoslobodskaya Street 36-1, Moscow 127055, Russia

Active Longevity Clinic “Institut Krasoty na Arbate”, 8 Maly Nikolopeskovsky lane, Moscow 119002, Russia

Natural Health Farm, 39 Jln Pengacara U1-48, Seksyen U1, Temasya Industrial Park, 40150 Shah Alam, Selangor, Malaysia

2nd Dermatology Division, Dermatology Institute IDI IRCCS, Via Monti di Creta 104, 00167 Rome, Italy

Department of Biomedical Sciences and Morpho-Functional Imaging, Polyclinic University of Messina, 98125 Messina, Italy

Received 28 November 2013; Accepted 26 February 2014; Published 9 April 2014

Academic Editor: Beatriz De las Heras

Copyright © 2014 Chiara De Luca et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Growing numbers of “electromagnetic hypersensitive” EHS people worldwide self-report severely disabling, multiorgan, non-specific symptoms when exposed to low-dose electromagnetic radiations, often associated with symptoms of multiple chemical sensitivity MCS and-or other environmental “sensitivity-related illnesses” SRI. This cluster of chronic inflammatory disorders still lacks validated pathogenetic mechanism, diagnostic biomarkers, and management guidelines. We hypothesized that SRI, not being merely psychogenic, may share organic determinants of impaired detoxification of common physic-chemical stressors. Based on our previous MCS studies, we tested a panel of 12 metabolic blood redox-related parameters and of selected drug-metabolizing-enzyme gene polymorphisms, on 153 EHS, 147 MCS, and 132 control Italians, confirming MCS altered –0.0001 glutathione-GSH, GSH-peroxidase-S-transferase, and catalase erythrocyte activities. We first described comparable—though milder—metabolic pro-oxidant-proinflammatory alterations in EHS with distinctively increased plasma coenzyme-Q10 oxidation ratio. Severe depletion of erythrocyte membrane polyunsaturated fatty acids with increased ω6-ω3 ratio was confirmed in MCS, but not in EHS. We also identified significantly altered distribution-versus-control of the CYP2C19*1-*2 SNP variants in EHS, and a 9.7-fold increased risk OR: 95% C.–74.5 of developing EHS for the haplotype nullGSTT1 + nullGSTM1 variants. Altogether, results on MCS and EHS strengthen our proposal to adopt this blood metabolic-genetic biomarkers’ panel as suitable diagnostic tool for SRI.

Autor: Chiara De Luca, Jeffrey Chung Sheun Thai, Desanka Raskovic, Eleonora Cesareo, Daniela Caccamo, Arseny Trukhanov, and Liudmil



Documentos relacionados