ANT COLONY ALGORITHM APPLIED TO AUTOMATIC SPEECH RECOGNITION GRAPH DECODINGReportar como inadecuado




ANT COLONY ALGORITHM APPLIED TO AUTOMATIC SPEECH RECOGNITION GRAPH DECODING - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 LIG - Laboratoire d-Informatique de Grenoble 2 GETALP - Groupe d’Étude en Traduction Automatique-Traitement Automatisé des Langues et de la Parole LIG - Laboratoire d-Informatique de Grenoble

Abstract : In this article we propose an original approach that allows the decoding of Automatic Speech Recognition Graphs by using a constructive algorithm based on ant colonies. In classical approaches, when a graph is decoded with higher order language models; the algorithm must expand the graph in order to develop each new observed n-gram. This extension process increases the computation time and memory consumption. We propose to use an ant colony algorithm in order to explore ASR graphs with a new language model, without the necessity of expanding it. We first present results based on the TED English corpus where 2-grams graph are decoded with a 4-grams language model. Then, we show that our approach performs better than a conventional Viterbi algorithm when computing time is constrained and allows a highly threaded decoding process with a single graph and a strict control of computation time and memory consumption.

Keywords : graph decoding ant colony algorithm language model automatic speech recognition real-time





Autor: Benjamin Lecouteux - Didier Schwab -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados