Resolvent estimates for operators belonging to exponential classes - Mathematics > Functional AnalysisReportar como inadecuado




Resolvent estimates for operators belonging to exponential classes - Mathematics > Functional Analysis - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: For $a,\alpha>0$ let $Ea,\alpha$ be the set of all compact operators $A$ ona separable Hilbert space such that $s nA=O\exp-an^\alpha$, where$s nA$ denotes the $n$-th singular number of $A$. We provide upper bounds forthe norm of the resolvent $zI-A^{-1}$ of $A$ in terms of a quantitydescribing the departure from normality of $A$ and the distance of $z$ to thespectrum of $A$. As a consequence we obtain upper bounds for the Hausdorffdistance of the spectra of two operators in $Ea,\alpha$.



Autor: Oscar F. Bandtlow

Fuente: https://arxiv.org/







Documentos relacionados