Stability and Synchronization in Neural FieldsReportar como inadecuado

Stability and Synchronization in Neural Fields - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

* Corresponding author 1 ODYSSEE - Computer and biological vision DI-ENS - Département d-informatique de l-École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech 2 NSL - Nonlinear System Laboratory

Abstract : Neural fields are an interesting option for modelling macroscopic parts of the cortex involving several populations of neurons, like cortical areas. Two classes of neural field equations are considered: voltage and activity based. The spatio-temporal behaviour of these fields is described by nonlinear integro-differential equations. The integral term, computed over a compact subset of $\mathbb{R}^q,\,q=1,2,3$, involves space and time varying, possibly non-symmetric, intra-cortical connectivity kernels. Contributions from white matter afferents are represented as external input. Sigmoidal nonlinearities arise from the relation between average membrane potentials and instantaneous firing rates. Using methods of functional analysis, we characterize the existence and uniqueness of a solution of these equations for general, homogeneous i.e. independent of the spatial variable, and locally homogeneous inputs. In all cases we give sufficient conditions on the connectivity functions for the solutions to be absolutely stable, that is to say independent of the initial state of the field. These conditions bear on some compact operators defined from the connectivity kernels, the sigmoids, and the time constants used in describing the temporal shape of the post-synaptic potentials. Numerical experiments are presented to illustrate the theory. An important contribution of our work is the application of the theory of compact operators in a Hilbert space to the problem of neural fields with the effect of providing very simple mathematical answers to the questions asked by neuroscience modellers.

Keywords : neural fields integro-differential equations compact operators Hilbert space stability synchronization neural masses cortical columns

Autor: Olivier Faugeras - François Grimbert - Jean-Jacques Slotine -



Documentos relacionados